128 research outputs found

    A separation of electrons and protons in the GAMMA-400 gamma-ray telescope

    Full text link
    The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern with the following scientific goals: search for signatures of dark matter, investigation of gamma-ray point and extended sources, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the active Sun, as well as high-precision measurements of spectra of high-energy electrons and positrons, protons, and nuclei up to the knee. The main components of cosmic rays are protons and helium nuclei, whereas the part of lepton component in the total flux is ~10E-3 for high energies. In present paper, the capability of the GAMMA-400 gamma-ray telescope to distinguish electrons and positrons from protons in cosmic rays is investigated. The individual contribution to the proton rejection is studied for each detector system of the GAMMA-400 gamma-ray telescope. Using combined information from all detector systems allow us to provide the proton rejection from electrons with a factor of ~4x10E5 for vertical incident particles and ~3x10E5 for particles with initial inclination of 30 degrees. The calculations were performed for the electron energy range from 50 GeV to 1 TeV.Comment: 19 pages, 10 figures, submitted to Advances and Space Researc

    The GAMMA-400 space observatory: status and perspectives

    Get PDF
    The present design of the new space observatory GAMMA-400 is presented in this paper. The instrument has been designed for the optimal detection of gamma rays in a broad energy range (from ~100 MeV up to 3 TeV), with excellent angular and energy resolution. The observatory will also allow precise and high statistic studies of the electron component in the cosmic rays up to the multi TeV region, as well as protons and nuclei spectra up to the knee region. The GAMMA-400 observatory will allow to address a broad range of science topics, like search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts and charged cosmic rays acceleration and diffusion mechanism up to the knee

    Renal cell cancer without a renal primary

    Get PDF
    Renal cell carcinoma has been increasing in incidence over the past two decades. Men are affected more than women and metastatic disease at presentation occurs in up to one third of patients. Metastasis can occur to virtually any organ, and involvement of multiple organs is not uncommon. To date, no reports have been found of metastatic disease without a renal primary. We present a case of renal cell cancer initially presenting as a subcutaneous mass with subsequent pancreatic and parotid gland metastases in absence of a primary renal source

    A search for spectral hysteresis and energy-dependent time lags from X-ray and TeV gamma-ray observations of Mrk 421

    Get PDF
    Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes. It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three "target-of-opportunity" (ToO) observations of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring event at TeV energies in 2014. These observations feature long, continuous, and simultaneous exposures with XMM-Newton (covering X-ray and optical/ultraviolet bands) and VERITAS (covering TeV gamma-ray band), along with contemporaneous observations from other gamma-ray facilities (MAGIC and Fermi-LAT) and a number of radio and optical facilities. Although neither rapid flares nor significant X-ray/TeV correlation are detected, these observations reveal subtle changes in the X-ray spectrum of the source over the course of a few days. We search the simultaneous X-ray and TeV data for spectral hysteresis patterns and time delays, which could provide insight into the emission mechanisms and the source properties (e.g. the radius of the emitting region, the strength of the magnetic field, and related timescales). The observed broadband spectra are consistent with a one-zone synchrotron self-Compton model. We find that the power spectral density distribution at 4×104\gtrsim 4\times 10^{-4} Hz from the X-ray data can be described by a power-law model with an index value between 1.2 and 1.8, and do not find evidence for a steepening of the power spectral index (often associated with a characteristic length scale) compared to the previously reported values at lower frequencies.Comment: 45 pages, 15 figure

    CALOCUBE: An approach to high-granularity and homogenous calorimetry for space based detectors

    Get PDF
    Future space experiments dedicated to the observation of high-energy gamma and cosmic rays will increasingly rely on a highly performing calorimetry apparatus, and their physics performance will be primarily determined by the geometrical dimensions and the energy resolution of the calorimeter deployed. Thus it is extremely important to optimize its geometrical acceptance, the granularity, and its absorption depth for the measurement of the particle energy with respect to the total mass of the apparatus which is the most important constraint for a space launch. The proposed design tries to satisfy these criteria while staying within a total mass budget of about 1.6 tons. Calocube is a homogeneous calorimeter instrumented with Cesium iodide (CsI) crystals, whose geometry is cubic and isotropic, so as to detect particles arriving from every direction in space, thus maximizing the acceptance; granularity is obtained by filling the cubic volume with small cubic CsI crystals. The total radiation length in any direction is more than adequate for optimal electromagnetic particle identification and energy measurement, whilst the interaction length is at least sufficient to allow a precise reconstruction of hadronic showers. Optimal values for the size of the crystals and spacing among them have been studied. The design forms the basis of a three-year R&D activity which has been approved and financed by INFN. An overall description of the system, as well as results from preliminary tests on particle beams will be described

    The GAMMA-400 gamma-ray telescope for precision gamma-ray emission investigations

    Get PDF
    The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Galactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well as diffuse gamma-ray emission, along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will study gamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The GAMMA-400 energy range is expected to be from â\u88¼20 MeV up to TeV energies for gamma rays, up to 10 TeV for electrons + positrons, and up to 1015eV for cosmic-ray nuclei. For 100-GeV gamma rays, the GAMMA-400 angular resolution is â\u88¼0.01° and energy resolution is â\u88¼1%; the proton rejection factor is â\u88¼5x105. GAMMA-400 will be installed onboard the Russian space observatory

    Revisiting Proxima with ESPRESSO

    Get PDF
    We aim to confirm the presence of Proxima b using independent measurements obtained with the new ESPRESSO spectrograph, and refine the planetary parameters taking advantage of its improved precision. We analysed 63 spectroscopic ESPRESSO observations of Proxima taken during 2019. We obtained radial velocity measurements with a typical radial velocity photon noise of 26 cm/s. We ran a joint MCMC analysis on the time series of the radial velocity and full-width half maximum of the cross-correlation function to model the planetary and stellar signals present in the data, applying Gaussian process regression to deal with stellar activity. We confirm the presence of Proxima b independently in the ESPRESSO data. The ESPRESSO data on its own shows Proxima b at a period of 11.218 ±\pm 0.029 days, with a minimum mass of 1.29 ±\pm 0.13 Me. In the combined dataset we measure a period of 11.18427 ±\pm 0.00070 days with a minimum mass of 1.173 ±\pm 0.086 Me. We find no evidence of stellar activity as a potential cause for the 11.2 days signal. We find some evidence for the presence of a second short-period signal, at 5.15 days with a semi-amplitude of merely 40 cm/s. If caused by a planetary companion, it would correspond to a minimum mass of 0.29 ±\pm 0.08 Me. We find that the FWHM of the CCF can be used as a proxy for the brightness changes and that its gradient with time can be used to successfully detrend the radial velocity data from part of the influence of stellar activity. The activity-induced radial velocity signal in the ESPRESSO data shows a trend in amplitude towards redder wavelengths. Velocities measured using the red end of the spectrograph are less affected by activity, suggesting that the stellar activity is spot-dominated. The data collected excludes the presence of extra companions with masses above 0.6 Me at periods shorter than 50 days.Comment: 25 pages, 26 figure

    The GAMMA-400 gamma-ray telescope characteristics. Angular resolution and electrons/protons separation

    Get PDF
    The measurements of gamma-ray fluxes and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV, which will be implemented by the specially designed GAMMA-400 gamma-ray telescope, concern with the following broad range of science topics. Searching for signatures of dark matter, surveying the celestial sphere in order to study gamma-ray point and extended sources, measuring the energy spectra of Galactic and extragalactic diffuse gamma-ray emission, studying gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measuring spectra of high-energy electrons and positrons, protons and nuclei up to the knee. To clarify these scientific problems with the new experimental data the GAMMA-400 gamma-ray telescope possesses unique physical characteristics comparing with previous and present experiments. For gamma-ray energies more than 100 GeV GAMMA-400 provides the energy resolution of ~1% and angular resolution better than 0.02 deg. The methods developed to reconstruct the direction of incident gamma photon are presented in this paper, as well as, the capability of the GAMMA-400 gamma-ray telescope to distinguish electrons and positrons from protons in cosmic rays is investigated.Comment: 7 pages, 6 figures, submitted to Proceedings of Scienc
    corecore